Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.733
1.
Sci Rep ; 14(1): 9091, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643270

N-acetyl-L-cysteine (L-NAC) is a proposed therapeutic for opioid use disorder. This study determined whether co-injections of L-NAC (500 µmol/kg, IV) or its highly cell-penetrant analogue, L-NAC methyl ester (L-NACme, 500 µmol/kg, IV), prevent acquisition of acute physical dependence induced by twice-daily injections of fentanyl (125 µg/kg, IV), and overcome acquired dependence to these injections in freely-moving male Sprague Dawley rats. The injection of the opioid receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IV), elicited a series of withdrawal phenomena (i.e. behavioral and cardiorespiratory responses, hypothermia and body weight loss) in rats that received 5 or 10 injections of fentanyl and similar numbers of vehicle co-injections. With respect to the development of dependence, the NLX-precipitated withdrawal phenomena were reduced in rats that received had co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme. In regard to overcoming established dependence, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 µg/kg, IV) were reduced in rats that had received co-injections of L-NAC, and more greatly reduced in rats that received co-injections of L-NACme beginning with injection 6 of fentanyl. This study provides compelling evidence that co-injections of L-NAC and L-NACme prevent the acquisition of physical dependence and overcome acquired dependence to fentanyl in male rats. The higher efficacy of L-NACme is likely due to its greater cell penetrability in brain regions mediating dependence to fentanyl and interaction with intracellular signaling cascades, including redox-dependent processes, responsible for the acquisition of physical dependence to fentanyl.


Acetylcysteine/analogs & derivatives , Lysine/analogs & derivatives , Morphine Dependence , Substance Withdrawal Syndrome , Rats , Male , Animals , Fentanyl/pharmacology , Rats, Sprague-Dawley , Naloxone/pharmacology , Narcotic Antagonists/pharmacology
2.
Sci Rep ; 14(1): 9767, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684914

Opioid use disorder (OUD) is a chronic relapsing disorder that is a major burden for the lives of affected individuals, and society as a whole. Opioid withdrawal is characterized by strong physical symptoms, along with signs of negative affect. Negative affect due to opioid withdrawal is a major obstacle to recovery and relapse prevention. The mechanisms behind negative affect due to either spontaneous or antagonist-precipitated opioid withdrawal are not well known, and more animal models need be developed. Here, we present behavioral models of negative affect upon naloxone-precipitated morphine withdrawal in adult male mice. Social, anxiety, and despair-like deficits were investigated following naloxone administration in mice receiving morphine under three dosing regimens; acute, chronic constant dose and chronic escalating doses. Social behaviour in the three-chamber social preference test was decreased following withdrawal from chronic and escalating but not acute morphine. Anxiety-like behaviour in the open field was increased for all three treatments. Despair-like behaviour was increased following withdrawal from chronic and escalating but not acute morphine. Altogether, these animal models will contribute to study behavioural and neuronal circuitries involved in the several negative affective signs characterizing OUD.


Disease Models, Animal , Morphine , Naloxone , Substance Withdrawal Syndrome , Animals , Male , Morphine/adverse effects , Morphine/administration & dosage , Mice , Naloxone/administration & dosage , Naloxone/pharmacology , Anxiety , Behavior, Animal/drug effects , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/pharmacology , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Social Behavior , Morphine Dependence/psychology , Opioid-Related Disorders
3.
Clin Pharmacokinet ; 63(4): 397-422, 2024 Apr.
Article En | MEDLINE | ID: mdl-38485851

Naloxone is a World Health Organization (WHO)-listed essential medicine and is the first choice for treating the respiratory depression of opioids, also by lay-people witnessing an opioid overdose. Naloxone acts by competitive displacement of opioid agonists at the µ-opioid receptor (MOR). Its effect depends on pharmacological characteristics of the opioid agonist, such as dissociation rate from the MOR receptor and constitution of the victim. Aim of treatment is a balancing act between restoration of respiration (not consciousness) and avoidance of withdrawal, achieved by titration to response after initial doses of 0.4-2 mg. Naloxone is rapidly eliminated [half-life (t1/2) 60-120 min] due to high clearance. Metabolites are inactive. Major routes for administration are intravenous, intramuscular, and intranasal, the latter primarily for take-home naloxone. Nasal bioavailability is about 50%. Nasal uptake [mean time to maximum concentration (Tmax) 15-30 min] is likely slower than intramuscular, as reversal of respiration lag behind intramuscular naloxone in overdose victims. The intraindividual, interindividual and between-study variability in pharmacokinetics in volunteers are large. Variability in the target population is unknown. The duration of action of 1 mg intravenous (IV) is 2 h, possibly longer by intramuscular and intranasal administration. Initial parenteral doses of 0.4-0.8 mg are usually sufficient to restore breathing after heroin overdose. Fentanyl overdoses likely require higher doses of naloxone. Controlled clinical trials are feasible in opioid overdose but are absent in cohorts with synthetic opioids. Modeling studies provide valuable insight in pharmacotherapy but cannot replace clinical trials. Laypeople should always have access to at least two dose kits for their interim intervention.


Naloxone , Narcotic Antagonists , Humans , Administration, Intranasal , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Drug Overdose/drug therapy , Half-Life , Naloxone/pharmacokinetics , Naloxone/administration & dosage , Naloxone/pharmacology , Narcotic Antagonists/pharmacokinetics , Narcotic Antagonists/pharmacology , Narcotic Antagonists/administration & dosage
4.
Eur Rev Med Pharmacol Sci ; 28(5): 2068-2083, 2024 Mar.
Article En | MEDLINE | ID: mdl-38497888

OBJECTIVE: Methyl-2-(4-chloro- phenyl)-5-benzoxazoleacetate (MCBA), a synthetic benzoxazole derivative with established antipsoriatic efficacy, was investigated for potential antinociceptive effects. This study employs various nociceptive assays in mice to elucidate MCBA's antinociceptive mechanisms. MATERIALS AND METHODS: MCBA's antinociceptive potential was tested against various nociception models induced by formalin, glutamate, capsaicin, a transient receptor potential vanilloid 1 (TRPV1) receptor agonist, and phorbol 12-myristate 13-acetate, a protein kinase C (PKC) activator. It was then assessed using the hot plate test and examined within the acetic acid-induced writhing test. During the acetic acid-induced writhing test, MCBA was pre-challenged against selective receptor antagonists such as naloxone, caffeine, atropine, yohimbine, ondansetron, and haloperidol. It was also pre-challenged with ATP-sensitive potassium channel inhibitor (glibenclamide) to further elucidate its antinociceptive mechanism. RESULTS: The results showed that oral administration of MCBA led to a dose-dependent and significant inhibition (p < 0.05) of nociceptive effects across all evaluated models at doses of 60, 120, and 240 mg/kg. Moreover, the efficacy of MCBA's antinociceptive potential was significantly counteracted (p < 0.0001) by specific antagonists: (i) directed at adenosinergic, alpha-2 adrenergic, and cholinergic receptors using caffeine, yohimbine, and atropine, respectively; and (ii) targeting ATP-sensitive potassium channels, employing glibenclamide. Antagonists aimed at opioidergic and serotoninergic receptors (naloxone and ondansetron, respectively) had poor utility in inhibiting antinociceptive activity. Conversely, the dopaminergic receptor antagonist haloperidol potentiated locomotor abnormalities associated with MCBA treatment. CONCLUSIONS: MCBA-induced antinociception involves modulation of glutamatergic-, TRVP1 receptors- and PKC-signaling pathways. It impacts adenosinergic, alpha-2 adrenergic, and cholinergic receptors and opens ATP-sensitive potassium channels.


Caffeine , Glyburide , Animals , Mice , Haloperidol , Nociception , Ondansetron , Adrenergic Agents , Atropine , KATP Channels , Naloxone/pharmacology , Receptors, Cholinergic , Yohimbine , Analgesics/pharmacology , Acetates
5.
J Ethnopharmacol ; 328: 117974, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38467317

ETHNOPHARMACOLOGICAL RELEVANCE: Acute alcohol intoxication is one of the leading causes of coma. A well-regarded Chinese herbal formula, known as An-Gong-Niu-Huang-Wan (AGNHW), has garnered recognition for its efficacy in treating various brain disorders associated with impaired consciousness, including acute alcohol-induced coma. Despite its clinical effectiveness, the scientific community lacks comprehensive research on the mechanistic aspects of AGNHW's impact on the electroencephalogram (EEG) patterns observed during alcohol-induced coma. Gaining a deeper understanding of AGNHW's mechanism of action in relation to EEG characteristics would hold immense importance, serving as a solid foundation for further advancing its clinical therapeutic application. AIM OF THE STUDY: The study sought to investigate the impact of AGNHW on EEG activity and sleep EEG patterns in rats with alcoholic-induced coma. MATERIALS AND METHODS: A rat model of alcohol-induced coma was used to examine the effects of AGNHW on EEG patterns. Male Sprague-Dawley rats were intraperitoneally injected with 32% ethanol to induce a coma, followed by treatment with AGNHW. Wireless electrodes were implanted in the cortex of the rats to obtain EEG signals. Our analysis focused on evaluating alterations in the Rat Coma Scale (RCS), as well as assessing changes in the frequency and distribution of EEG patterns, sleep rhythms, and body temperature subsequent to AGNHW treatment. RESULTS: The study found a significant increase in the δ-band power ratio, as well as a decrease in RCS scores and ß-band power ratio after modeling. AGNHW treatment significantly reduced the δ-band power ratio and increased the ß-band power ratio compared to naloxone, suggesting its superior arousal effects. The results also revealed a decrease in the time proportion of WAKE and REM EEG patterns after modeling, accompanied by a significant increase in the time proportion of NREM EEG patterns. Both naloxone and AGNHW effectively counteracted the disordered sleep EEG patterns. Additionally, AGNHW was more effective than naloxone in improving hypothermia caused by acute alcohol poisoning in rats. CONCLUSION: Our study provides evidence for the arousal effects of AGNHW in alcohol-induced coma rats. It also suggests a potential role for AGNHW in regulating post-comatose sleep rhythm disorders.


Alcoholic Intoxication , Coma , Rats , Male , Animals , Rats, Sprague-Dawley , Coma/chemically induced , Coma/drug therapy , Electroencephalography , Arousal/physiology , Sleep , Naloxone/pharmacology
6.
Behav Pharmacol ; 35(2-3): 114-121, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38451023

We hypothesized that opioid receptor antagonists would inhibit motivated behavior produced by a natural reward. To evaluate motivated responses to a natural reward, mice were given access to running wheels for 71.5 h in a multi-configuration testing apparatus. In addition to a running wheel activity, locomotor activity (outside of the wheel), food and water intake, and access to a food container were measured in the apparatus. Mice were also tested separately for novel-object exploration to investigate whether naloxone affects behavior unrelated to natural reward. In untreated mice wheel running increased from day 1 to day 3. The selective µ-opioid receptor antagonist ß-funaltrexamine (ß-FNA) (5 mg/kg) slightly decreased wheel running, but did not affect the increase in wheel running from day 1 to day 3. The non-selective opioid receptor antagonist naloxone produced a greater reduction in wheel running than ß-FNA and eliminated the increase in wheel running that occurred over time in the other groups. Analysis of food access, locomotor behavior, and behavior in the novel-object test suggested that the reduction in wheel running was selective for this highly reinforcing behavior. These results indicate that opioid receptor antagonism reduces responses to the natural rewarding effects of wheel running and that these effects involve multiple opioid receptors since the non-selective opioid receptor antagonist had greater effects than the selective µ-opioid receptor antagonist. It is possible that at the doses employed, other receptor systems than opioid receptors might be involved, at least in part, in the effect of naloxone and ß-FNA.


Motor Activity , Narcotic Antagonists , Animals , Mice , Narcotic Antagonists/pharmacology , Motivation , Naloxone/pharmacology , Receptors, Opioid
7.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38473865

Opioid peptides and their G protein-coupled receptors are important regulators within the cardiovascular system, implicated in the modulation of both heart and vascular functions. It is known that naloxone-an opioid antagonist-may exert a hypertensive effect. Recent experimental and clinical evidence supports the important role of inflammatory mechanisms in hypertension. Since opioids may play a role in the regulation of both blood pressure and immune response, we studied these two processes in our model. We aimed to evaluate the effect of selective and non-selective opioid receptor antagonists on blood pressure and T-cell activation in a mouse model of high swim stress-induced analgesia. Blood pressure was measured before and during the infusion of opioid receptor antagonists using a non-invasive tail-cuff measurement system. To assess the activation of T-cells, flow cytometry was used. We discovered that the non-selective antagonism of the opioid system by naloxone caused a significant elevation of blood pressure. The selective antagonism of µ and κ but not δ opioid receptors significantly increased systolic blood pressure. Subsequently, a brief characterization of T-cell subsets was performed. We found that the blockade of µ and δ receptors is associated with the increased expression of CD69 on CD4 T-cells. Moreover, we observed an increase in the central memory CD4 and central memory CD8 T-cell populations after the δ opioid receptor blockade. The antagonism of the µ opioid receptor increased the CD8 effector and central memory T-cell populations.


Analgesia , Hypertension , Mice , Animals , Narcotic Antagonists/pharmacology , Blood Pressure , Receptors, Opioid, delta/metabolism , Naloxone/pharmacology , Receptors, Opioid, mu , Pain , Analgesics, Opioid/pharmacology , Receptors, Opioid, kappa/metabolism
8.
J Appl Physiol (1985) ; 136(5): 1097-1104, 2024 May 01.
Article En | MEDLINE | ID: mdl-38511209

When contracting muscles are freely perfused, the acid-sensing ion channel 3 (ASIC3) on group IV afferents plays a minor role in evoking the exercise pressor reflex. We recently showed in isolated dorsal root ganglion neurons innervating the gastrocnemius muscles that two mu opioid receptor agonists, namely endomorphin 2 and oxycodone, potentiated the sustained inward ASIC3 current evoked by acidic solutions. This in vitro finding prompted us to determine whether endomorphin 2 and oxycodone, when infused into the arterial supply of freely perfused contracting hindlimb muscles, potentiated the exercise pressor reflex. We found that infusion of endomorphin 2 and naloxone in decerebrated rats potentiated the pressor responses to contraction of the triceps surae muscles. The endomorphin 2-induced potentiation of the pressor responses to contraction was prevented by infusion of APETx2, an ASIC3 antagonist. Specifically, the peak pressor response to contraction averaged 19.3 ± 5.6 mmHg for control (n = 10), 27.2 ± 8.1 mmHg after naloxone and endomorphin 2 infusion (n = 10), and 20 ± 8 mmHg after APETx2 and endomorphin 2 infusion (n = 10). Infusion of endomorphin 2 and naloxone did not potentiate the pressor responses to contraction in ASIC3 knockout rats (n = 6). Partly similar findings were observed when oxycodone was substituted for endomorphin 2. Oxycodone infusion significantly increased the exercise pressor reflex over its control level, but subsequent APETx2 infusion failed to restore the increase to its control level (n = 9). The peak pressor response averaged 23.1 ± 8.6 mmHg for control (n = 9), 33.2 ± 11 mmHg after naloxone and oxycodone were infused (n = 9), and 27 ± 8.6 mmHg after APETx2 and oxycodone were infused (n = 9). Our data suggest that after opioid receptor blockade, ASIC3 stimulation by the endogenous mu opioid, endomorphin 2, potentiated the exercise pressor reflex.NEW & NOTEWORTHY This paper provides the first in vivo evidence that endomorphin 2, an endogenous opioid peptide, can paradoxically increase the magnitude of the exercise pressor reflex by an ASIC3-dependent mechanism even when the contracting muscles are freely perfused.


Acid Sensing Ion Channels , Muscle Contraction , Muscle, Skeletal , Naloxone , Oligopeptides , Receptors, Opioid, mu , Reflex , Animals , Male , Rats , Acid Sensing Ion Channels/metabolism , Analgesics, Opioid/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Oligopeptides/pharmacology , Oxycodone/pharmacology , Oxycodone/administration & dosage , Physical Conditioning, Animal/physiology , Rats, Sprague-Dawley , Receptors, Opioid, mu/metabolism , Reflex/drug effects , Reflex/physiology
9.
Kaohsiung J Med Sci ; 40(5): 456-466, 2024 May.
Article En | MEDLINE | ID: mdl-38446546

Transcutaneous electrical nerve stimulation (TENS) activates various pathways to induce antinociceptive effects, based on the frequencies used. This study evaluates the preemptive analgesic effects and their duration of low- (LT: 4 Hz) and high-frequency TENS (HT: 100 Hz) using a rat model of acute inflammatory pain. Acute inflammation was induced by injecting 1% formalin into the hind paws of rats. LT or HT was applied for 30 min before formalin injection. Pain-related behaviors, such as licking, flinching, and lifting, were recorded for 60 min postinjection. Immunohistochemistry was used to assess the number of phosphorylated extracellular signal-regulated kinase (pERK)- and c-fos-positive cells in the spinal cord. Naloxone, a µ-opioid receptors (MORs) antagonist, and naltrindole, a δ-opioid receptors (DORs) antagonist, were administered before TENS application. Pain behavior duration and pERK- and c-fos-positive cell expression were then measured. LT and HT pretreatment significantly reduced both pain behaviors and the number of pERK- and c-fos-positive cells postformalin injection. Naloxone and naltrindole partially reversed the effects of LT and HT, respectively. Notably, HT's analgesic effect lasted up to 120 min whereas that of LT persisted for 90 min. LT and HT effectively exerted their preemptive analgesic effects on acute inflammatory pain by inhibiting pERK and c-fos expression in the spinal cord. HT presented a longer-lasting effect compared to LT. MOR and DOR activation may contribute to LT and HT's analgesic mechanisms, respectively.


Inflammation , Naloxone , Proto-Oncogene Proteins c-fos , Rats, Sprague-Dawley , Transcutaneous Electric Nerve Stimulation , Animals , Transcutaneous Electric Nerve Stimulation/methods , Male , Naloxone/pharmacology , Rats , Proto-Oncogene Proteins c-fos/metabolism , Acute Pain/therapy , Extracellular Signal-Regulated MAP Kinases/metabolism , Narcotic Antagonists/pharmacology , Naltrexone/pharmacology , Naltrexone/analogs & derivatives , Spinal Cord/metabolism , Spinal Cord/drug effects , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/antagonists & inhibitors , Pain Management/methods , Phosphorylation/drug effects , Disease Models, Animal
10.
Behav Brain Res ; 463: 114897, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38331101

Tamoxifen has been shown to reduce glutamate release from presynaptic glutamatergic nerves and reverse tolerance to morphine-induced respiratory depression. Changes in glutamatergic neurotransmission in the central nervous system contribute to morphine tolerance, dependence, and withdrawal. This study, therefore, evaluated effects of tamoxifen on development of analgesic tolerance and dependence, and brain glutamate and glutamine levels in chronic morphine administration. Mice implanted with placebo or morphine pellets were injected with tamoxifen (0.6-2 mg/kg) or vehicle twice daily for 3 days. Nociceptive response was evaluated in the hot plate and tail immersion tests, 4, 48 and 72 h post-implant, and following a challenge dose of morphine (10 mg/kg). Withdrawal signs were determined after naloxone (1 mg/kg) administration. Morphine increased nociceptive threshold which declined over time. At 72 h, acute morphine elicited tolerance to the analgesic effect in the hot plate test in vehicle or tamoxifen administered animals. In the tail immersion test, however, tolerance to morphine analgesia was observed in tamoxifen, but not vehicle, co-administration. Tamoxifen did not reduce withdrawal signs. In contrast to previous reports, glutamate and glutamine levels in the hippocampus and frontal cortex did not change in the morphine-vehicle group. Confirming previous findings, tamoxifen (2 mg/kg) decreased glutamate and glutamine concentrations in the hippocampus in animals with placebo pellets. Both doses of tamoxifen significantly changed glutamate and/or glutamine concentrations in both regions in morphine pellet implanted animals. These results suggest that tamoxifen has no effect on dependence but may facilitate tolerance development to the antinociception, possibly mediated at the spinal level, in chronic morphine administration.


Morphine Dependence , Substance Withdrawal Syndrome , Mice , Animals , Morphine/pharmacology , Glutamine , Glutamic Acid , Morphine Dependence/drug therapy , Naloxone/pharmacology , Naloxone/therapeutic use , Frontal Lobe , Hippocampus , Analgesics/therapeutic use , Substance Withdrawal Syndrome/drug therapy
11.
Transl Psychiatry ; 14(1): 125, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38413576

Mood and anxiety disorders are leading causes of disability worldwide and are major contributors to the global burden of diseases. Neuropeptides, such as oxytocin and opioid peptides, are important for emotion regulation. Previous studies have demonstrated that oxytocin reduced depression- and anxiety-like behavior in male and female mice, and opioid receptor activation reduced depression-like behavior. However, it remains unclear whether the endogenous opioid system interacts with the oxytocin system to facilitate emotion regulation in male and female mice. We hypothesized that opioid receptor blockade would inhibit the anxiolytic- and antidepressant-like effects of oxytocin. In this study, we systemically administered naloxone, a preferential µ-opioid receptor antagonist, and then intracerebroventricularly administered oxytocin. We then tested mice on the elevated zero maze and the tail suspension tests, respective tests of anxiety- and depression-like behavior. Contrary to our initial hypothesis, naloxone potentiated the anxiolytic-like, but not the antidepressant-like, effect of oxytocin. Using a selective µ-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, and a selective κ-opioid receptor antagonist, norbinaltorphimine, we demonstrate that µ-opioid receptor blockade potentiated the anxiolytic-like effect of oxytocin, whereas κ-opioid receptor blockade inhibited the oxytocin-induced anxiolytic-like effects. The present results suggest that endogenous opioids can regulate the oxytocin system to modulate anxiety-like behavior. Potential clinical implications of these findings are discussed.


Anti-Anxiety Agents , Narcotic Antagonists , Mice , Male , Female , Animals , Narcotic Antagonists/pharmacology , Anti-Anxiety Agents/pharmacology , Oxytocin/pharmacology , Receptors, Opioid , Receptors, Opioid, mu , Naloxone/pharmacology , Antidepressive Agents/pharmacology
12.
Peptides ; 175: 171181, 2024 May.
Article En | MEDLINE | ID: mdl-38423212

Thyrotropin-releasing hormone (TRH) acts centrally to exert pleiotropic actions independently from its endocrine function, including antinociceptive effects against somatic pain in rodents. Whether exogenous or endogenous activation of TRH signaling in the brain modulates visceral pain is unknown. Adult male Sprague-Dawley rats received an intracerebroventricular (ICV) injection of the stable TRH analog, RX-77368 (10, 30 and 100 ng/rat) or saline (5 µl) or were semi-restrained and exposed to cold (4°C) for 45 min. The visceromotor response (VMR) to graded phasic colorectal distensions (CRD) was monitored using non-invasive intracolonic pressure manometry. Naloxone (1 mg/kg) was injected subcutaneously 10 min before ICV RX-77368 or saline. Fecal pellet output was monitored for 1 h after ICV injection. RX-77368 ICV (10, 30 and 100 ng/rat) reduced significantly the VMR by 56.7%, 67.1% and 81.1% at 40 mmHg and by 30.3%, 58.9% and 87.4% at 60 mmHg respectively vs ICV saline. Naloxone reduced RX-77368 (30 and 100 ng, ICV) analgesic response by 51% and 28% at 40 mmHg and by 30% and 33% at 60 mmHg respectively, but had no effect per se. The visceral analgesia was mimicked by the acute exposure to cold. At the doses of 30 and 100 ng, ICV RX-77368 induced defecation within 30 min. These data established the antinociceptive action of RX-77368 injected ICV in a model of visceral pain induced by colonic distension through recruitment of both opioid and non-opioid dependent mechanisms.


Colorectal Neoplasms , Pyrrolidonecarboxylic Acid/analogs & derivatives , Thyrotropin-Releasing Hormone/analogs & derivatives , Visceral Pain , Rats , Male , Animals , Rats, Sprague-Dawley , Visceral Pain/drug therapy , Analgesics/pharmacology , Naloxone/pharmacology
13.
Tohoku J Exp Med ; 262(4): 245-252, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38267059

Transcutaneous electrical nerve stimulation (TENS) has been used to reduce pain or improve motor function in musculoskeletal and neurological disorders in the clinic. Although some studies have suggested electrotherapy as an intervention for edema, the effects and mechanisms of TENS on inflammation-induced edema remain unclear. Thus, we aimed to investigate the effects of TENS on arthritic pain with edema. 1% carrageenan was injected into the right tibiofemoral joint of 69 male Sprague-Dawley rats (200-250 g). After the development of arthritic pain, low-frequency (4-Hz, Low-TENS, n = 25) and high-frequency (100-Hz, High-TENS, n = 25) TENS with sub-motor threshold or placebo-TENS (n = 19) was applied for 20-min to medio-lateral part of the ipsilateral side. Weight bearing and knee-bend tests were used to assess pain-like behaviors. Also, we examined the size of edema and measured tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) levels in the synovium by western blot. Eight rats in each of the two TENS groups were injected with Naloxone. Edema was reduced in the low- and high-frequency TENS groups at 6-h. TENS-treated rats showed reduced pain in the knee-bend test at 6-h. We observed decreased weight load shifts on the ipsilateral side in TENS groups. Naloxone reduced these effects. TNF-α and IL-1ß expression decreased in the synovial membrane at 6-h. These results suggest that low- and high-frequency TENS have acutely positive effects on inflammatory edema, with the management of arthritic pain and reduction in pro-inflammatory mediators. Therefore, Low-TENS and High-TENS may be useful in treating acute inflammatory pain and edema.


Edema , Pain , Rats, Sprague-Dawley , Transcutaneous Electric Nerve Stimulation , Tumor Necrosis Factor-alpha , Animals , Transcutaneous Electric Nerve Stimulation/methods , Male , Edema/therapy , Edema/pathology , Pain/etiology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Pain Management/methods , Synovial Membrane/pathology , Arthritis/therapy , Arthritis/complications , Rats , Naloxone/pharmacology
14.
Anesth Analg ; 138(4): 866-877, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37083595

BACKGROUND: Individuals recovering from mild traumatic brain injury (mTBI) have increased rates of acute and chronic pain. However, the mechanism through which mTBI triggers heightened pain responses and the link between mTBI and postsurgical pain remain elusive. Recent data suggest that dysregulated serotonergic pain-modulating circuits could be involved. We hypothesized that mTBI triggers dysfunction in descending serotonergic pain modulation, which exacerbates acute pain and delays pain-related recovery after surgery. METHODS: Using mouse models of mTBI and hindpaw incision for postsurgical pain in C57BL/6J mice, mechanical withdrawal thresholds were assessed throughout the postsurgical period. To determine whether mTBI leads to persistent alteration of endogenous opioid tone, mu-opioid receptors (MORs) were blocked with naloxone. Finally, the role of descending serotonergic signaling on postsurgical allodynia in animals with mTBI was examined using ondansetron (5-HT 3 receptor antagonist) or a serotonin-specific neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), to ablate descending serotonergic fibers. The treatment effects on withdrawal thresholds were normalized to baseline (percentage of maximum possible effect, MPE%), and analyzed using paired t -test or 2-way repeated-measures ANOVA with post hoc multiple comparisons. RESULTS: Post-mTBI mice demonstrated transient allodynia in hindpaws contralateral to mTBI, while no nociceptive changes were observed in sham-mTBI animals (mean difference, MD, MPE%, post-mTBI day 3: -60.9; 95% CI, -88.7 to -35.0; P < .001). After hindpaw incision, animals without mTBI exhibited transient allodynia, while mice with prior mTBI demonstrated prolonged postsurgical allodynia (MD-MPE% postsurgical day 14: -65.0; 95% CI, -125.4 to -4.5; P = .04). Blockade of MORs using naloxone transiently reinstated allodynia in mTBI animals but not in sham-mTBI mice (MD-MPE% post-naloxone: -69.9; 95% CI, -94.8 to -45.1; P < .001). Intrathecal administration of ondansetron reversed the allodynia observed post-mTBI and postincision in mTBI mice (compared to vehicle-treated mTBI mice, MD-MPE% post-mTBI day 3: 82.7; 95% CI, 58.5-106.9; P < .001; postsurgical day 17: 62.5; 95% CI, 38.3-86.7; P < .001). Both the acute allodynia after TBI and the period of prolonged allodynia after incision in mTBI mice were blocked by pretreatment with 5,7-DHT (compared to sham-mTBI mice, MD-MPE% post-mTBI day 3: 0.5; 95% CI, -18.5 to 19.5; P = .99; postsurgical day 14: -14.6; 95% CI, -16.7 to 45.9; P = .48). Similar behavioral patterns were observed in hindpaw ipsilateral to mTBI. CONCLUSIONS: Collectively, our results show that descending serotoninergic pain-facilitating signaling is responsible for nociceptive sensitization after mTBI and that central endogenous opioid tone opposes serotonin's effects. Understanding brain injury-related changes in endogenous pain modulation may lead to improved pain control for those with TBI undergoing surgery.


Brain Concussion , Neuralgia , Mice , Animals , Hyperalgesia/chemically induced , Serotonin/adverse effects , Ondansetron/pharmacology , Analgesics, Opioid/adverse effects , Mice, Inbred C57BL , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Naloxone/pharmacology
15.
Exp Clin Psychopharmacol ; 32(2): 150-157, 2024 Apr.
Article En | MEDLINE | ID: mdl-37470999

Prescription and illicit opioid use are a public health crisis, with the landscape shifting to fentanyl use. Since fentanyl is 100-fold more potent than morphine, its use is associated with a higher risk of fatal overdose that can be remediated through naloxone (Narcan) administration. However, recent reports indicate that xylazine, an anesthetic, is increasingly detected in accidental fentanyl overdose deaths. Anecdotal reports suggest that xylazine may prolong the fentanyl "high," alter the onset of fentanyl withdrawal, and increase resistance to naloxone-induced reversal of overdose. To date, no preclinical studies have evaluated the impacts of xylazine on fentanyl self-administration (SA; 2.5 µg/kg/infusion) or withdrawal to our knowledge. We established a rat model of xylazine/fentanyl co-SA and withdrawal and evaluated outcomes as a function of biological sex. When administered alone, chronic xylazine (2.5 mg/kg, intraperitoneal) induced unique sex-specific withdrawal symptomatology, whereby females showed delayed onset of signs and a possible enhancement of sensitivity to the motor-suppressing effects of xylazine. Xylazine reduced fentanyl consumption in both male and female rats regardless of whether it was experimenter-administered or added to the intravenous fentanyl product (0.05, 0.10, and 0.5 mg/kg/infusion) when compared to fentanyl SA alone. Interestingly, this effect was dose-dependent when self-administered intravenously. Naloxone (0.1 mg/kg, subcutaneous injection) did not increase somatic signs of fentanyl withdrawal, regardless of the inclusion of xylazine in the fentanyl infusion in either sex; however, somatic signs of withdrawal were higher across time points in females after xylazine/fentanyl co-SA regardless of naloxone exposure as compared to females following fentanyl SA alone. Together, these results indicate that xylazine/fentanyl co-SA dose-dependently suppressed fentanyl intake in both sexes and induced a unique withdrawal syndrome in females that was not altered by acute naloxone treatment. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Drug Overdose , Substance Withdrawal Syndrome , Rats , Male , Female , Animals , Naloxone/pharmacology , Naloxone/therapeutic use , Fentanyl/pharmacology , Xylazine/pharmacology , Narcotic Antagonists , Morphine , Substance Withdrawal Syndrome/drug therapy , Analgesics, Opioid/therapeutic use
16.
Neurochem Res ; 49(2): 415-426, 2024 Feb.
Article En | MEDLINE | ID: mdl-37864024

Morphine (MPH) is widely used for pain management; however, long-term MPH therapy results in antinociceptive tolerance and physical dependence, limiting its clinical use. Zingerone (ZIN) is a natural phenolic compound with neuroprotective effects. We investigated the effects of single and repeated doses of ZIN on MPH-induced tolerance, dependence, and underlying biochemical mechanisms. After a dose-response experiment, tolerance was developed to MPH (10 mg/kg, i.p.) for seven days. In the single-dose study, ZIN was administered on day seven. In the repeated-dose study, ZIN was administered for seven days. Naloxone (5 mg/kg, i.p., 120 min after MPH) was injected to assess withdrawal signs on day seven. The levels of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), total thiol (TT), and glutathione peroxidase (GPx) were measured in the prefrontal cortex. The protein levels of interleukin-1 beta (IL-1ß) and NLRP3-ASC-Caspase-1 axis were assessed by ELISA and Western blotting, respectively. Results showed that ZIN (100 mg/kg) had no antinociceptive activity, and subsequent experiments were performed at this dose. Repeated ZIN reversed MPH antinociceptive tolerance, whereas single ZIN did not. Single and repeated ZIN attenuated naloxone-induced jumping. In addition, repeated ZIN significantly inhibited weight loss. Repeated ZIN suppressed the MPH-induced increase in TBARS, NO, IL-1ß, NLRP3, ASC, and Caspase-1. It also inhibited MPH-induced TT and GPx reduction. In contrast, single ZIN had no effect. Findings suggest that ZIN reduces MPH-induced tolerance and dependence by suppressing oxidative stress and NLRP3 inflammasome activation. This study provides a novel therapeutic approach to reduce the side effects of MPH.


Guaiacol/analogs & derivatives , Morphine Dependence , Morphine , Mice , Animals , Morphine/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Thiobarbituric Acid Reactive Substances , Naloxone/pharmacology , Naloxone/therapeutic use , Oxidative Stress , Nitric Oxide/metabolism , Analgesics/therapeutic use , Caspases/metabolism , Morphine Dependence/metabolism
17.
Pharmacol Biochem Behav ; 234: 173688, 2024 Jan.
Article En | MEDLINE | ID: mdl-38056696

There is accumulating evidence supporting the involvement of tissue-plasminogen activator (tPA) in the mechanisms underlying the effects of morphine and an enriched environment. This study was designed to investigate possible interactive roles of the glutamatergic and the dopaminergic systems regarding hippocampal tPA in the neurobiology of morphine dependence. For this purpose, Wistar albino rats, housed in either a standard- (SE) or an enriched environment (EE) were implanted subcutaneously with morphine (150 mg base) or placebo pellets. Behavioral and somatic signs of morphine abstinence precipitated by an opioid-receptor antagonist naloxone (1 mg/kg, i.p.) 72 h after the pellet implantation were observed individually for 15 min in all groups. Memantine (10 mg/kg i.p.), an antagonist of N-methyl-D-aspartic acid class of glutamatergic receptor-subtype decreased teeth-chattering, ptosis, diarrhea and the loss of body weight. SKF82958 (1 mg/kg, i.p.), a dopamine D1-receptor agonist decreased jumping and ptosis but increased rearing and loss of body weight. On the other hand, co-administration of SKF82958 with memantine prevented some of their effects that occur when administered alone at the same doses. Furthermore, the EE did not change the intensity of morphine abstinence. The level of hippocampal tPA mRNA was found to be lower in the SE morphine abstinence group than in the placebo group and close to the EE morphine abstinence group, whereas there was no significant alteration of its level in the memantine or SKF82958 groups. These findings suggest that the interaction between the glutamatergic and the dopaminergic systems may be an important component of the neurobiology of morphine dependence, and the role of tPA in this interaction should be further investigated.


Morphine Dependence , Substance Withdrawal Syndrome , Rats , Animals , Morphine/pharmacology , Naloxone/pharmacology , Memantine/pharmacology , Morphine Dependence/prevention & control , Rats, Wistar , Substance Withdrawal Syndrome/drug therapy , Body Weight
18.
J Hum Lact ; 40(1): 113-119, 2024 Feb.
Article En | MEDLINE | ID: mdl-38018534

BACKGROUND: Breastfeeding among lactating people with opioid use disorder taking buprenorphine monotherapy is generally accepted, as low concentrations of buprenorphine and metabolites in human milk have been well-established. The use of buprenorphine-naloxone for pregnant and lactating people with opioid use disorder is expanding and there is no information available regarding the concentrations of naloxone and their metabolites in human milk to recommend the use of this combination medication during lactation. RESEARCH AIMS: To determine the concentrations of buprenorphine and naloxone and their primary metabolites in human milk, maternal plasma, and infant plasma, among lactating buprenorphine-naloxone maintained people and their infants. METHODS: Four lactating buprenorphine-naloxone maintained people provided plasma and human milk samples on Days 2, 3, 4, 14, and 30 postpartum. Infant plasma was obtained on Day 14. RESULTS: Concentrations of buprenorphine, norbuprenorphine and their glucuronide metabolites were present in maternal plasma and human milk at low concentrations, consistent with previous research in lactating buprenorphine monotherapy participants. Naloxone was not detected, or was detected at concentrations below the limit of quantification, in maternal plasma and in all except one human milk sample at Day 30. Naloxone was not detected or detected at concentrations below the limit of quantification in all infant plasma samples. CONCLUSION: Results support the use of buprenorphine-naloxone by lactating people who meet appropriate criteria for breastfeeding.


Buprenorphine , Opioid-Related Disorders , Infant , Female , Pregnancy , Humans , Lactation/metabolism , Breast Feeding , Buprenorphine, Naloxone Drug Combination , Buprenorphine/therapeutic use , Naloxone/pharmacology , Naloxone/therapeutic use , Opioid-Related Disorders/drug therapy , Analgesics, Opioid/therapeutic use
19.
J Ethnopharmacol ; 321: 117500, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38030022

ETHNOPHARMACOLOGICAL RELEVANCE: Melissa officinalis L. (Lamiaceae) is a medicinal plant native to Mediterranean regions and found in other parts of the world. Extracts and essential oil from this widely cultivated culinary medicinal herb are used in traditional medicine to manage a variety of disorders that include epilepsy and pain. AIM OF THE STUDY: To assess the anti-nociceptive potentials of Melissa officinalis essential oil (MO) and probe the involvement of adrenergic, opioidergic, serotonergic and potassium adenosine triphosphate (KATP) mechanisms in its anti-nociceptive effects. MATERIAL AND METHODS: We employed formalin-, acetic acid and hot plate-induced nociception to study the acute anti-nociceptive effects of MO. The sciatic nerve injury (CCI) model of neuropathic pain was utilized to study the anti-nociceptive effects of MO on chronic pain. Effects of MO on anxiety, cognitive deficits, oxidative stress and inflammation in the CCI rats were evaluated on elevated plus maze, open field test, novel object recognition, oxidative stress parameters and pro-inflammatory cytokines, respectively. The possible mechanism(s) of MO's anti-nociceptive effects were elucidated using prazosin, yohimbine, propranolol, glibenclimide, naloxone and metergoline, which are acknowledged antagonists for α1-, α2- and ß-adrenergic, potassium adenosine triphosphate (KATP), opioidergic and serotonergic systems, respectively. RESULTS: MO significantly attenuated acetic acid- and formalin-induced nociception; prolonged the mean reaction time of rats on hot plate before and following sciatic nerve chronic injury (CCI). MO ameliorated anxiety, cognitive deficits and oxidative stress, reduced pro-inflammatory cytokine levels and produced a near total restoration of injured sciatic nerves in CCI rats. Naloxone, metergoline and glibenclimide significantly blocked, while prazosin, yohimbine and popranolol failed to block the anti-nociceptive effects of MO in formalin-induced nociception. CONCLUSIONS: MO contains biologically active compounds with potential anti-nociceptive properties that modulate KATP, opioidergic and serotonergic pathways. These support the development of bioactive compounds from MO as anti-nociceptive agents.


Chronic Pain , Melissa , Oils, Volatile , Plants, Medicinal , Rats , Animals , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Chronic Pain/drug therapy , Metergoline , Formaldehyde , Yohimbine , Adrenergic Agents , Acetates , Adenosine Triphosphate , Naloxone/pharmacology , Potassium , Prazosin
20.
Behav Brain Res ; 459: 114773, 2024 02 29.
Article En | MEDLINE | ID: mdl-38000532

BACKGROUND AND AIMS: In rodents, placebo analgesia is often investigated through direct conditioning of stimuli, but humans can experience placebo analgesia through expectation without experience. In this study, we sought to determine whether placebo analgesia could be elicited through social communication. METHODS: Male and female mice were housed in pairs (designated "Active" and "Bystander") and tested for thermal thresholds on a hot plate (53 °C). Food restriction (1 hr/day) was implemented. The Active mouse was taken to a new cage with food dusted with cocoa (COC) or cinnamon (CINN). The Bystander mice were given regular chow in the home cage. After feeding, the Active mice were given morphine (5 mg/kg, SC) or saline and tested on the hot plate. After 5 pairings of a flavor and treatment (counterbalanced), Active mice were tested following access to a flavored food. Bystander mice were given their first direct exposure to a flavored food and tested on the hot plate. The protocol was repeated with naloxone (10 mg/kg, IP) administered prior to testing. Finally, mice were tested in a two-choice test with both flavored foods available. RESULTS: Active mice showed a conditioned analgesic response to the morphine-paired flavor that was reduced by naloxone. Bystander mice showed a placebo analgesic response to their cagemate's morphine-paired flavor that was not significantly impacted by naloxone. Bystander mice spent more time in the chamber associated with their cagemate's morphine-paired flavor. CONCLUSIONS: To our knowledge, this is the first investigation of placebo analgesia without direct conditioning, instead relying on social communication between mice. The lack of effect with naloxone pretreatment suggests an opioid-independent effect in the Bystander mice. Placebo analgesia in mice may be possible without direct conditioning to better model the effect of expectation of a novel analgesic in humans.


Analgesia , Morphine , Humans , Mice , Male , Female , Animals , Morphine/pharmacology , Naloxone/pharmacology , Naloxone/therapeutic use , Pain/drug therapy , Analgesia/methods , Analgesics/therapeutic use , Communication
...